Aggregate Tobin’s Q and Inequality: The Role of Capital Taxation and Rents

Lídia Brun1 Ignacio González2

1Université Libre de Bruxelles
2American University

Seminar at the Washington Center for Equitable Growth
May 2018
Outline of the presentation

Introduction

Facts

Literature

The Model

Calibration and Results

Conclusions
Piketty (2014)’s two empirical findings:
- Capital Output Ratio is rising $\beta = \frac{K}{Y} \uparrow$
- Capital’s Share of Output is rising: $\alpha = r\beta \uparrow$

At that time, the debate was very focused on the value of σ. Is $\sigma > 1$? or $\sigma < 1$?

The evidence that wealth-income ratios were driven mostly by an asset price recovery (Piketty and Zucman 2014) received less attention.
- other alternative theories also emphasized this: financialization literature, Rowthorn (2014), etc.

We focus here on equity Tobin’s $Q=W/K$ and the divergence between stock aggregates: $\frac{W}{Y} \uparrow$ and $\frac{K}{Y} \downarrow$
Our contribution

- Tobin’s Q has increased during the period in which inequality has rocketed and investment has slow down.
 - We can't simply assume that $q = 1$ and use $F = (W, L) = F(qK, L)$.
 - In fact, and perhaps more interestingly, changes in the valuation q have crowded out capital formation K.

- Aggregate Tobin’s Q reflects the role of pro-capital policies that have real effects on aggregate outcomes.
 - Potential candidates: capital taxation and rents.

- Heterogeneous agents framework to explain evolution of Tobin’s Q and its macro effects on equity wealth, investment, equity returns, impact on inequality/welfare.
Equity Tobin’s Q

\[Q = \frac{E}{K + (E - W)} \]

Year	Tobin Q
1950 | 0.2
1960 | 0.4
1970 | 0.6
1980 | 0.8
1990 | 1.0
2000 | 1.2
2010 | 1.4

decomposition
Figure: Financial Wealth decomposition. $Q = \frac{E}{K + FA - NEL}$
Wealth and Capital Ratios

Figure: Equity-Wealth-Output and Corporate-Capital-Output ratios
Figure: Corporate Investment

[Image of corporate investment ratios from 1950 to 2010, showing trends in gross and net investment relative to output and capital.]

- **Gross Investment / Output**
- **Net Investment / Output**
- **Net Investment / Capital**

The figures illustrate the historical trends in corporate investment ratios, indicating periods of growth and decline.
Secular Aggregate Movements: A Hypothesis

Figure: Capital Market

Pre-1980 equilibrium:
W<K and Q<1

Post-2000 equilibrium:
W=K and Q=1
Equity Returns adjusted for Inflation, Taxes and Portfolio Costs. 1960-2012
Tobin’s Q and Inequality

- We build a model where changes in asset prices can occur at the expense of corporate investment.

 - Asset prices and Tobin’s Q drivers:
 - Capital Taxation
 - Monopoly Rents

 - Investment is low due to high Tobin’s Q, not despite high Tobin’s Q (conceptual difference with respect to traditional Q theory and recent papers like Gutierrez and Philippon (2017))

- We believe that there are good reasons to study monopoly power in an heterogeneous agents setting.
Literature

- On asset prices and capital taxation:
 - Sialm (2009): negative relation between taxes on equity and aggregate stock valuations

- On the desired level of capital in an incomplete markets economy.
 - Davila et al. (2012): The U.S. economy has too little capital because a large proportion of the population relies mainly on labor income

- Monopoly power and its implications.
 - Barkai (2016)
 - De Loecker and Eeckhout (2017)
The Model

Environment

- A financial economy with **one tradable asset** (stocks) that capitalizes conventional and pure profits.
 - No distinction between “capital share” vs “pure profit share”. We believe this is important for realistic tax policy

Households:

- Make consumption/savings decisions under uncertain income
- Save in stocks (actually, a composite of stocks, i.e., a portfolio).
- Pay taxes on dividends and capital gains

Firms

- Monopolistic Competition
- Own physical capital, invest using retained earnings and distribute dividends
- Make investment decisions to maximize shareholder value
- Pay corporate taxes

Taxes and monopoly rents

- create a wedge between the market value of firms and the replacement cost of physical capital (Tobin’s $Q \neq 1$)
The Household Problem

Preferences

\[\max U(c_i) = \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_{it}) \quad \text{where} \quad c_{it} = \left(\sum_{j=1}^{n} (c_{jit})^{\frac{\xi-1}{\xi}} \right)^{\frac{\xi}{\xi-1}} \]

Budget Constraint

\[\sum_{j=1}^{n} p_{jt} c_{jit} + \sum_{j=1}^{n} v_{jt} s_{jit+1} = w_t \epsilon_{it} + \sum_{j=1}^{n} \left(v_{jt} + (1 - \tau_d) d_{jt} - \tau_g (v_{jt} - \frac{p_{jt}}{P_{t-1}} v_{jt-1}) \right) s_{jit} \]

\[\frac{\epsilon_{it} + \sum_{j=1}^{n} \left(v_{jt} + (1 - \tau_d) d_{jt} - \tau_g (v_{jt} - \frac{p_{jt}}{P_{t-1}} v_{jt-1}) \right) s_{jit}}{1 + \kappa} \]

Euler Equation

\[\frac{u'(c_{it})}{\mathbb{E}_t[\beta u'(c_{it+1})]} = \frac{v_{jt+1} + (1 - \tau_d) d_{jt+1} - \tau_g (v_{jt+1} - \frac{p_{jt+1}}{P_{t+1}} v_{jt})}{v_{jt}} \times \frac{P_t}{P_{t+1}} \frac{1}{1 + \kappa} = 1 + r_{jt+1} \]

Imposing no bubble condition, the real price of firm’s j is:

\[\frac{v_{jt}}{P_t} = \frac{1 - \tau_d}{1 - \tau_g} \sum_{k=1}^{\infty} \frac{d_{jt+k}}{P_{t+k} \prod_{l=1}^{k} (1 + \tilde{r}_{t+l})} \quad \text{where} \quad \tilde{r} \approx \frac{r + \kappa}{1 - \tau_g} \]
The Firm’s problem

Capital is accumulated according to the standard equation:

\[K_{jt+1} = (1 - \delta)K_{jt} + i_{jt} \quad \text{where} \quad i_{jt} = \left(\int_0^1 \frac{\xi - 1}{\xi} \frac{1}{i_{jht}} \, dh \right)^{\frac{\xi}{\xi - 1}} \]

Total demand for product \(j \) is the sum of the consumption demand and the investment demand for that product:

\[y_j = \int_0^1 c_{ijt} \Phi_{t-1}(s, e) \, d\xi + \int_0^1 i_{hjt} \, dh = \left(\frac{p_{jt}}{P_t} \right)^{-\xi} (C_t + I_t) = \left(\frac{p_{jt}}{P_t} \right)^{-\xi} F(K_t, L_t) \]

The firm’s financing constraint:

\[d_{jt} + P_t i_{jt} + w_t L_{jt} - \tau_c (p_{jt} F(K_{jt}, L_{jt}) - w_t L_{jt} - \delta K_{jt}) = p_{jt} F(K_{jt}, L_{jt}) \]
Firm’s Capital

Using constant returns to scale assumption and the ”no-bubble condition”:

\[K_{jt+1} = \sum_{k=1}^{\infty} \left(\frac{d_{jt+k}}{P_{t+k} \prod_{l=1}^{k} (1 + \tilde{r}_{t+l})} - \frac{1}{\xi} \frac{(1 - \tau_c) p_{jt+k} F(K_{jt+k}, L_{jt+k})}{P_{t+k} \prod_{l=1}^{k} (1 + \tilde{r}_{t+l})} \right) \]
Tobin’s Q

The Tobin’s Q is the ratio between the financial valuation of the firm $\frac{v_{jt}}{P_t}$ and the value of its capital stock K_{jt+1}:

$$Q_{jt} = \frac{v_{jt}}{P_t K_{jt+1}} = \frac{1 - \tau_d}{1 - \tau_g} \left(1 + \frac{1}{\xi} \frac{1 - \tau_c}{K_{jt+1}} \sum_{k=1}^{\infty} \frac{p_{jt+k} F(K_{jt+k}, L_{jt+k})}{P_{t+k} \prod_{l=1}^{k} (1 + \tilde{r}_{t+l})} \right)$$

In the steady state with symmetric equilibrium: $K_j = K$; $p_j = P$; $v_j = v$; $d_j = d$), Tobin’s Q is:

$$Q(r, K) = \frac{1 - \tau_d}{1 - \tau_g} \left(1 + \frac{1}{\xi} \frac{1 - \tau_c}{K} F(K, L) \left(\frac{1 - \tau_g}{r + \kappa} \right) \right)$$
Comparative Statics

- A decrease in τ_d increases Q
- A decrease in τ_g decreases Q
- A decrease in ξ (increase in markup) increases Q
- If markets are competitive (i.e. $\xi = \infty$) neither τ_c nor κ affect Q in equilibrium. Under monopolistic competition:
 - A decrease in τ_c increases Q
 - A decrease in κ increases Q
Effective Corporate Tax Rate

Figure: Decrease in τ_c, 1960-2012
Dividend and Capital Gains Taxes

Figure: Decrease in τ_d and τ_g, 1960-2012
Portfolio Costs

Figure: Decrease in κ, 1980-2012
Steady States

Figure: Capital Market Equilibria in the 1970-1980 and the 2000-2010

1970-1980

2000-2010
Results

Table: Data vs Model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Data 1970-1980</th>
<th>Model SS1</th>
<th>Data 2000-2010</th>
<th>Model SS2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dividend Tax Rate τ_d</td>
<td>40.13%</td>
<td>40.13%</td>
<td>10.95%</td>
<td>10.95%</td>
</tr>
<tr>
<td>Capital Gains Tax τ_g</td>
<td>18.91%</td>
<td>18.91%</td>
<td>10.09%</td>
<td>10.09%</td>
</tr>
<tr>
<td>Corporate Tax τ_c</td>
<td>35.38%</td>
<td>35.38%</td>
<td>23.28%</td>
<td>23.28%</td>
</tr>
<tr>
<td>Portfolio Cost κ</td>
<td>2.26%</td>
<td>2.26%</td>
<td>0.99%</td>
<td>0.99%</td>
</tr>
<tr>
<td>Labor Tax τ_l</td>
<td>-</td>
<td>30.71%</td>
<td>-</td>
<td>34.57%</td>
</tr>
<tr>
<td>Markup $\frac{\xi}{\xi-1}$</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1.10</td>
</tr>
<tr>
<td>Equity-Output Ratio $\frac{E}{Y}$</td>
<td>0.99</td>
<td>1.01</td>
<td>2.12</td>
<td>2.03</td>
</tr>
<tr>
<td>Capital-Output Ratio $\frac{K}{Y}$</td>
<td>2.29</td>
<td>2.29</td>
<td>2.11</td>
<td>2.01</td>
</tr>
<tr>
<td>Tobin’s $Q = \frac{E}{K}$</td>
<td>0.44</td>
<td>0.44</td>
<td>1.01</td>
<td>1.01</td>
</tr>
<tr>
<td>Equity Return r</td>
<td>1.91%</td>
<td>1.87%</td>
<td>5.01%</td>
<td>6.14%</td>
</tr>
<tr>
<td>Labor Share $\frac{wL}{Y}$</td>
<td>64.27</td>
<td>66.18</td>
<td>61.39</td>
<td>58.52</td>
</tr>
<tr>
<td>Dividend-Output Ratio $\frac{d}{Y}$</td>
<td>7.13</td>
<td>4.21</td>
<td>8.06</td>
<td>14.60</td>
</tr>
</tbody>
</table>
Results

Figure: Decomposition Analysis

Share of total percentage change

- Share of total change

K/Y E/Y Q return Lshare d/Y
-0.5
0
0.5
1
1.5
2
Share of total change
Figure: Welfare Gain/Loss per Asset Holdings and Productivity
Conclusions

• Changes Q have
 • a direct effect on wealth
 • an indirect effect on investment, factor prices, factor shares and welfare.
 • at a global scale, González and Trivín (2016)

• Post-1980 drivers of Q: capital taxation and rents. Other drivers?

• Capital income taxation that lowers Q has a positive effect on capital formation and equality. This is the case of dividend income taxation or corporate taxation in interaction with monopoly markups
 • Implications for optimal tax policy. Brun, González and Rojas, forthcoming (2018)
Thanks!
Dividend Tax

An increase in τ_d reduces the Tobin’s Q
An increase in monopoly power increases the Tobin’s Q and reduces capital demand.
Capital Gains Tax

Figure: $\tau_g = 20\%$

τ_g reduces capital demand and increases the Tobin’s Q.
Portfolio Costs

Figure: $\kappa = 0.5\%$

Under perfect competition, κ reduces capital demand but does not affect the Tobin’s Q.
Under monopolistic competition, κ reduces capital and the Tobin’s Q.
Corporate Tax

Figure: $\tau_c = 20\%$

Under perfect competition, τ_c reduces capital demand but does not affect the Tobin’s Q.
Under monopolistic competition, τ_c reduces capital and the Tobin’s Q.
Figure: Capital - Chained dollars

![Graph showing the ratio of capital to output over time. The x-axis represents years from 1960 to 2010, and the y-axis represents the ratio on a logarithmic scale. The graph includes data points for the years 1960, 1970, 1980, 1990, 2000, and 2010, with values ranging from -0.06 to 0.1. The trend shows a general decrease in the ratio over time.]
Figure: Corporate Investment
Figure: Corporate Profits

![Graph showing corporate profits over time for different categories: All Corp: Before Tax, All Corp: After Tax, Non-financial: Before Tax, Non-financial: After Tax. The graph includes data points for years 1950 to 2010.]
Figure: Returns adjustment